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Abstract. A class of layered king models interpolating between the homogeneous Iring 
model and the McCoy-Wu model is studied. Critical exponents and the transfer matrix 
spectrum at the critical paint are calculated numerically using finite-sire scaling techniques 
and analytically by using an analogy with an electron gas in a crystal with impurities. The 
transfer matrix spectrum is compared with those of some strongly anisotropic critical 
systems. 

1. Introduction 

Since nature seems simple, but is not simplistic, these have always been attempts to 
understand complicated systems in terms of the simplest possible model. The ZD king 
model is the simplest model of ferromagnetism which shows a non-trivial critical 
behaviour and still admits an exact solution. To go beyond the idealization of 
homogeneous models, McCoy and Wu [ l ,  21 proposed a layered lsing model and 
showed by exact solution that this modified system indeed displays a different critical 
behaviour. Here, we are considering a generalization of this model, as described by 
the action S (also referred to as classical Hamiltonian %) [3] 

where the U are classical king spins and J ,  and J 2 ( 1 )  are coupling constants, where 
.I2(/) describes the inhomogeneity. The longitudinal extent of the lattice is 2N in the 
non-modified direction and X = nA in the transverse one. One can consider the action 
(1.1) as the homogeneous one but modified with defect lines as described by the J 2 ( / ) .  
One would like to calculate the thermodynamics in the limit of large lattices. In 
particular, the following choices can be studied. 

1. Take the limits A, "CO, but keep n finite. This case corresponds to the model 
originally studied in [I] ,  considering the J2(1 )  as independent random variables with 
probability distribution function P(J2) .  It was found that if P ( J J  is sharply peaked 
then the specific heat has an infinitely differentiable essential singularity at the critical 
point [l]. Later studies further investigated the specific heat as a function of n and 
showed that if n becomes large, the specific heat amplitude as obtained for the 
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homogeneous Ising model is strongly suppressed [3]. The concept of frustration 
plaquettes has been very useful in analysing in detail the thermodynamic behaviour 
[4,5]. Excitation spectra of related Ising models were also studied recently [6]. 

2. Let N+m, but keep A finite. Then the distance of the defect lines n = N/A 
will scale with the transverse size N of the lattice. This case did receive a lot of attention 
recently, both at the critical point and in the non-critical regime. I t  was first studied 
for d4 =2, where it was shown that the exponents of the local magnetization and of 
the local correlation functions depend continuously on the J2 [7,8]. For A = 1, this 
is merely a modified boundary condition [9-12]. Although these boundary conditions 
are not invariant under the whole set of ZD conformal transformations, the well known 
relationship 1131 of the finite-size scaling amplitudes of the correlation length and 
critical exponents remains valid [14]. Thecritical exponents thus obtained are generaliz- 
ations of the familiar surface (or corner) exponents. The critical correlation length 
spectrum has been investigated in much detail [15-201. In particular, it was shown 
that for any finite number d4 of defect lines, the model is conformally invariant if and 
only if the spacings of the defect lines are commensurate with each other [20]. In this 
case, the spectrum can be obtained from the unitary irreducible representations of a 
O(2A)  Kac-Moody algebra [19-211 and the conformal central charge is c = d4 for 
almost all values of the couplings J 2 ,  as compared with c = 112 for the homogeneous 
model. For commensurate defect spacings, the inhomogeneity introduced by the defect 
lines breaks the conformal group V @  V to their diagonal subgroup, as can be seen by 
explicit construction of the generators [18]. These results also hold for the case of 
extended layers [22]. Line defects have also been studied in a more general defect 
geometry [23], as well as for generalized defect couplings [24]. 

Another possibility is to keep dl = 1, but to consider extended defects close to the 
surface [25,26]. These extended defect perturbations can be relevant, marginal or 
irrelevant, depending on how fast J 2 ( I )  approaches its bulk value. If the perturbation 
is marginal, the preservation of conformal invariance depends on the detailed profile 
of J 2 ( / ) .  Surprisingly, numerical and analytical studies suggest that the correlation 
length amplitude-exponent relation stays intact, even if the spectrum can no longer 
be cast into irreducible representations of the conformal group [27-291. Radial extended 
defects have also been studied [30,31]. 

We want to consider an interpolation between the iwo cases mentioned. We let 
both n and .kk become large (the limit N + m  is understood) but impose the condition 
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n = N j d l  = aNN (1 .2)  

such that in each strip of width n there is only one defect line and where 0 < B < 1 
and a are constants. The cases # = 0 and 0 = 1 correspond to the situations already 
mentioned. For simplicity, we take J ,  = J2 = J ,  away from the defect lines and choose 
the defect strength K = J2,dLrcc,/J2,no defect to be the same for all defect lines. The defect 
configuration is sketched in  figure 1. Systems of this kind (with an additional averaging 
done over the defect couplings) were studied using E-expansion techniques [32]. 

We shall be interested in  calculating the transfer matrix spectrum at the critical 
point. For conformally invariant systems, the complete operator content (a[/ relevant, 
marginal and irrelevant scaling fields) can be read from the transfer matrix spectrum 
133,341, Although our model is not conformally invariant (see below), the transfer 
matrix spectrum might still contain important information. 

Consider for a moment the case K = 0. Then the model decomposes into d4 indepen- 
dent systems, each of size n,  with free boundary conditions. The correlation length 
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Figure 1. The XI strip geometry with the defect lines. The coupling J , ,  J ,  is normalized 
to one away from the defects and I( is the defect strength. 

along the strip is then obtained from conformal invariance [13,33] 

where x(0) is a surface critical exponent of the usual 213 k ing  model. On the other 
hand, for K = 1 we have tI1= N/(271x(I)) with x ( l )  a bulk critical exponent. The line 
defect perturbation has an  RG eigenvalue exponent y ,  = 2 - 0 - x,. For 0 < 1 ,  the defect 
perturbation is relevant close to K = 1 in the 21> k ing  model ( x , ( K  = 1 )  = I )  and irrelevant 
close to K = O(x, ( K = 0) = 2) and  we expect 

511 - N ”  K # 1  (1.4) 

(see also [32]). Such a behaviour, for 0 # 1 ,  is not consistent with conformal invariance, 
but is rather characteristic of directed (or  dynamical) systems, where the exponent 0 
is related to the two correlation length exponents ulr uI1: 

8 = V,i /  u l .  (1.5) 

The transfer matrix spectrum of directed percolation and of the tight-binding model 
has been studied recently [35]. Surprisingly, it was found that the transfer matrix 
spectra are very similar, although the models a re  in different universality classes. 

The layered k ing  model we are going to study has the advantage that it shares 
with true directed systems the feature that the anisotropy of the model is relevant and 
leads to two different exponents vl and ull. ( In  higher dimensions, E-expansion 
techniques suggest a similar anisotropic scaling [32].) The exponent 8 can be chosen 
differently from the mean-field value 0 = 2 and the model still remains exactly solvable. 
In the absence of a general theory, the objective of this paper is to obtain further 
insight into the phenomenology, in particular in low dimensions, by studying another 
simple example. 

In fact, we prefer for technical reasons to consider the quantum Hamiltonian H 
of the classical action S, as defined by the transfer matrix F = eXp(-TH). In the extreme 
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anisotropic limit J, + O ,  J2+m with J, exp(+2J2) being fixed, the Hamiltonian takes a 
simple form for 7'0 (which automatically guarantees &+a) 

H = -f [ t ~ ~ ( k ) + u ~ ( k ) ~ ~ ( k + l ) ] - f ( ~ - l ) ~  u"(k)u"(k+l )  (1.6) 

where the r are Pauli matrices, t corresponds to the temperature and the prime on 
the second sum indicates that the defects are placed such that (1.2) is satisfied. Periodic 
boundary conditions are implied. Since the density of the defects A," - N - @  + 0 for 
N + m, it follows that the critical point f, = 1 is the same as for the defectless system, 
Although we are treating here exclusively the case of (thin) line defects, our results 
should translate directly to the case of thick layers, as shown for A finite [22]. 

The correspondence of the eigenvalues E, of H with the thermodynamics deter- 
mined by the action S is well known (for a review, see [34]). The correlation lengths 
(ll,c of the local fields and the free energy per spin f are obtained from 

5.1 = E, -E" f = E o l N  (1 .7)  

where Eo is the ground state energy of H.  Although we are studying an anisotropic 
system, taking the Hamiltonian limit leading to H is allowed, at least if the global 
symmetry is unaffected. This can be checked for genuinely anisotropic systems like 
directed percolation, where the universality of the critical exponents was explicitly 
confirmed [35,36]. We therefore expect that our results will immediately translate to 
the isotropic transfer matrix by universality [34]. 

The contents of this paper are as follows. In section 2, the spectrum of H is studied 
numerically. We shall give evidence that the relationship (1.5) is indeed satisfied and 
we calculate uIl and vL. Since H can be written in terms of fermionic harmonic 
oscillators, its entire spectrum is determined by the energies of the one-particle excita- 
tions. Our numerical analysis allows us to guess the form of these, as specified in (2.12) 
and (2.13). Some tests on the universality of the spectrum are also performed. Section 
3 gives the analytic solution for the spectrum and confirms the results of the numerical 
analysis. This will be done by using an analogy to an electron gas. Section 4 gives our 
conclusions. 

L Frachebourg and M Henkel 

N 

k = l  k 

2. Numerical finite-size scaling calculation 

In this section, we calculate the eigenvalues ofthe quantum Hamiltonian H numerically, 
using finite-size scaling techniques. The comparison with the analytical results, to be 
obtained in section 3,  allows an assessment of the reliability of the numerical methods 
for a non-isotropic critical point, while previous studies have up to now mainly 
concentrated on isotropic systems [34]. The technique employed diagonalizes H on 
finite chains of N sites and then extrapolates for N+m.  We shall use the EST 

extrapolation algorithm [37,38] for that purpose. For detailed reviews on extrapolation 
techniques, see [39,40]. 

2.1. General remarks 

The diagonalization of H follows the familiar technique of Lieb, Schultz and Mattis 
[41]. We begin by rewriting the Hamiltonian H in terms of fermionic operators c (m)  
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by a Jordan-Wigner transformation 

H =  t[c'(m)c(m)-f]-$ 1 [ ( c + ( m ) - c ( m ) ) ( c t ( m + l ) + c ( m + l ) ) ]  
N N-1 

m = ,  m = ,  

+($- Q)(ct(N)-c(~))(cr(l)+c(1)) 

+ + ( I  - K )  (e'( N,) -C(N,))(Ct(N,+l)+C( N,+1)) (2.1) 

= x [c+(n)A.,c(m)+; (cr(n)B,,ct( m)+ ~c)]+cons tan t  (2.2) 

I 

N 

n,m=,  

where K is the defect strength, A is a symmetric and B an antisymmetric matrix and 
the defects are at the sites N, such that their distance is n = a N a .  The operator 

commutes with H and divides its spectrum into the two sectors Q = 0, 1 which 
correspond to an even or odd number of excited fermionic states, respectively. Now, 
H can be written in diagonal form 

I ,  A\  
\'.7, 

" - T  *,,,\,-t- -?\ 
- L J ~ \ ~ l \ , i k , i k  21 

k 

where the eigenvalues A(k) are determined from 

M& = (A-B)(A+B)& = A(k)*$k 

where M is the following N x N matrix (we have taken t =  1): 

M=  

i 2  -1  (1-24 
-1 2 - 1  

. . .  
2 -1 

- 1  1 + K 2  -K 
- K  2 -1 

. . .  
2 -1 

( 1 - 2 0 )  - 1  2 

Note that the eigenvalues A ( k )  depend explicitly on the sector Q. This is the starting 
point for the analytical solution in section 3. 

For !he numerical calculations, we proceed as follows. Consider 8 =p!q ,  ,n< q. 
Choose the length N of the quantum chain such that N = (21)", where I = 1,2, .  . , is 
a positive integer. The number of defects is d4 = (2l)"-" and the defects, all having the 
same defect strength K ,  are equidistantly distributed at a distance n = (21)". We now 
proceed to diagonalize M. 

I 

2.2. Correlation lengths 

We first check the critical point finite-size scaling. Consider the spin-spin correlation 
length 

= E , -  E, -  N - " .  (2.7) 
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Finite-size estimates for t? are obtained from [42] 
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where we have used that the critical point is at t = t,= 1. In tables 1 and 2, we give 
numerical estimates as obtained for some values of 0 and K .  We see that indeed 8= 8, 
as expected. 

x, .... .L..:_ -- -..: _... P^. .L^ r..- r " * ,  
, Y C I I ,  wc  U " L ' l l , l  d l  C>LIIII*,C ,U, ,,,e r*purlrIl, Y I  LlUl l l  L'L, 

In tables 1 and 2, we give estimates for the exponent g as obtained for K = 112. The 
results are consistent with uI = 1/63 which implies vII = 1, independent of 63. This means 
that the inhomogeneity introduced by the defects is not strong enough to change the 
correlation length scaling in this direction. This is not surprising, since the density of 
defects .U/ N still vanishes in the N + m limit, provided 0 > 0. Summarizing, we have, 

Table 1. Finite-size estimates for the exponents and i as defined in the text, for several 
lattices of size N. The data were obtained for R = 112. The l i n e  denoted by m gives the 
extrapolated YBIUCS as obtained with the BST extrapolation algorithm and the numbers in 
brackets give the estimated uncertainty in the last given digit(s). 

I( = 0.5 I( = 0.2 li = 0.8 

N 

36 
64 

100 
144 
196 
256 
324 

484 
576 
676 
784 
900 
1024 
1156 
1296 
1444 
1600 
1764 
1936 
2116 
2304 
2500 

nnn -"" 

i i 

0.437 j oys  0.8ioi 
0.470 3935 0.9072 
0.481 5034 0.9475 
0.486 1502 0.9647 
0.488 6170 0.9722 
0.490 2084 0.9774 
0.491 3663 0.9797 
0."2 2550 0.9821 
0.492 9922 0.9838 
0.493 5921 0.9851 
0.4940971 0.9861 
0.494 5292 

0.495 2256 
0.495 5120 
0.495 7650 
0.495 9936 
0.496 1926 
0.496 3797 
0.496 5439 
0.496 7047 
0.4968316 
0.496 9788 

0.494 9004 

B 

0.455 7964 
0.468 5289 
0.475 3470 
0.479 7125 
0.482 7585 
0.485 0068 
0.486 7351 
0.488 I054 
0.489 2187 
0.490 I413 
0.490 9182 
0.491 5816 
0.492 1542 
0.492 6542 
0.493 0940 
0.493 0940 
0.493 8318 
0.494 1457 
0.494 4290 
0.494 6886 
0.494 9 IS6 
,0.495 1339 
0.495 3313 

B 

0.007 i92i 
0.266 6158 
0.362 7573 
0.413 1473 
0.443 1416 
0.462 0401 
0.474 2829 
0.482 3300 
0.487 6644 
0.491 2206 
0.493 6044 
0.495 2120 
0.496 3016 
0.497 0454 
0.497 5600 
0.4979318 
0.498 1994 
0.4983712 
0.498 5063 
0.498 6292 
0.498 7799 
0.498 8038 
0.498 8162 

m 0.5I)00(Il 0.995 (10) 0.500 I I 1  O.SO( l )  

expected I 
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Table 2. Finite-size estimates for the exponents e' and i, obtained far I = 112. The line 
denoted by m contains the extrapolated values rrom the RST algorithm and the numbers 
in brackets give the estimated uncenainty in the last given digit. 

64 0.285 3013 0.5327 0.541 8697 1.0272 
216 0.3144492 0.6231 0.6354485 1.2288 
512 0.319 7045 0.6352 0.656 3818 1.2917 

inoo 0.322 6500 0.6418 0.662 5136 1.3152 
1728 0.324 5423 0.6460 0.664 5552 1.3268 
2744 0.325 8625 0.6490 0.665 3573 1.3296 

m 0.3333 (4) 0.666 (1) 0.666 ( S i  1.34 (I) 

expected 3 

independently of K ( #  I ) :  

1 
Y -- q = l .  (2.10) 
l - 0  

For a discussion of the scaling of the free energy, see below. 

finite-size scaling amplitudes of the one-fermion states 
We now discuss the excitation spectrum of H. Since 6 -  N", we consider the 

which depend on the eigenvalues of Q. The normalization of the A!*' is motivated 
from the case K = 0. In figures 2 and  3, we show finite-size estimates for the amplitudes 
A!"', A!". A band structure for the one-particle states is apparent. 

I I I I 
0 '  2.0 4.0 6.0 

1/N 
Figure 2. Spectrum o f  the finite-sire scaling amplitudes A"" o f  the one-fermion levels or 
H f o r O = l / Z a n d  ~ = 1 / 2 i n t h e s e c t o r Q = O .  
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2.0 I 
I 

I I I I 
0 2.0 4.0 6.0 

1/N 
Figure 3. Spectrum of the finite-size scaling amplitudes A'" of the one-fermion levels of 
H for B = 112 and K = I j 2  in the sector Q = 1. 

For a quantitative description, we parametrize the amplitudes AiQ' as follows. For 
Q = 0, we have 

A"'(r, m) = f +  r i [ A ( K ) - m ( m  + 1 ) U ( K ) / N 2 - * ' ]  (2.12) 

with r = 0, 1,. . . , N R  - 1; m =0, 1, . . . , - 1. In writing this, we tacitly assume 
that m is a small integer. Otherwise, the higher-order terms in l/N neglected here 
must be taken into account (see section 3). All one-particle amplitudes A''' are twofold 
degenerate. 

For Q = 1, we have 

A"'( r, m )  = f +  r i [ A (  K )  - ~ ' U ( K ) / N ~ - ~ ' ]  (2.13) 

with the same values of r and m as above. Besides the value m = 0, where the 
corresponding amplitudes are non-degenerate, all other A"' are twofold degenerate. 

Note that A ( K )  and U ( % )  are the same for both values of Q and are given by 

2 1 1  2K 
A ( K )  = 1 --tan-' 1 / x  =---cosC'- 

71 2 T  1+K2 
(2.14) 

(2.15) 

As they stand, (2.14) and (2.15) are only valid for 0 s  K < 1. For other values of K ,  

one has to choose the appropriate branch of the tan-'. In  table 3, we give some 
numerical estimates for the functions A ( K )  and U ( K ) .  Our numerical results are in 
agreement with the above equations. The equations (2.1 1)-(2.15) give theexact solution 
for the enrire spectrum of H. We shall prove them in section 3. 

We note the following. 
1. The one-particle states fall into broad energy bands. This is described by the 

two quantum numbers r and m. r characterizes the different energy bands, while m 
distinguishes, up to the last twofold degeneracy, the levels inside a given band. The 
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Table 3. Numerical estimates for the functions A(<) and U(M) describing the scaled 
one-panicle spectrum of  the quantum Hamiltonian (1.6) and their comparison with the 
analytical results. 

Numerical Analytic 

a K A ( < )  2 U ( r )  A ( x )  2 W n )  

i 0.2 0.125 (2) 5.23 (2)  0.125 666 5.2360 
0.5 0.295 I S  ( I O )  16.72 (5) 0.295 167 16.7552 
0.8 0.425 ( 10) 55.5 (5) 0.429 553 55.8505 

~~~ ~ ~~~~~ 

5 0.5 0.295 (1) 16.75 (20) 0.295 167 16.7552 

7 0.5 0.295 15 (20) 16.7 (5) 0.295 167 16.7552 

bands are independent of Q and are centred at half-integer values of the AiQ'. Their 
width is @-independent, but depends on K 

and we recognize the same K-dependence as for the shifts of the correlation length 
amplitudes for the single defect line case [lS]. 

2. Inside the bands, the levels are symmetric with respect to the centre. The scaling 
of the differences of the amplitudes is different from those of the whole bands, as seen 
in (2.12) and (2.13). 

3. In the limit 8+ 1 ,  we retain only the possibility m = O .  We then recover the 
previous results for a single defect line [IS]. 

4. These results were obtained using periodic boundary conditions in (1.6), which 
implies Q = 0 for the Z,-even and Q = 1 for the Z,-odd states. Antiperiodic boundary 
conditions are included by simply exchanging the roles of the Q = 0 and Q = 1 sectors. 
In particular, this implies that the band structure is independent of the boundary 
conditions considered here. 

it is interesting to observe a difierent behaviour o i the  one-particie ieveis on diiierent 
scales. On the scale of the whole bands, one has equidistant level spacing, as would 
have been expected for a conformally invariant system! On the other hand, the 
excitations inside the bands, which dominate the long-range behaviour of the correlation 
functions, show a completely different behaviour. 

2.3. Ground-state energy 

We now discuss the finite-size scaling of the ground-state energy Eo. Its finite-size 
scaling at the critical point f = I ,  = 1 is described by the ansatz 

E,/ N = B;N-'' +0( N-48) (2.17) 
i-0 

which at least for K = O  is certainly correct. We have checked that the form (2.17) stays 
correct for general K .  In table 4, we give, for K = 112, numerical estimates for some 
values of 8. Of course, Bo = 2 / r  is the bulk term and does not depend on the introduction 
of the defect lines. Note, however, that the next coefficients also appear to be 8- 
independent, which gives confidence that the ansatz chosen is meaningful. 
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Table 4. Finite-sire scaling coefficients 8, as defined in (2.18) for the ground-state energy 
at the criticill point for I( = 112 as estimated from the RST algorithm. 

5 0,636619 ( I )  -0.13104(1) 0.03402 ( I )  -0.0102(3) 

3 0.6366197(1) -0.131 0 4 i l )  0.033 (2) -0.009 ( 5 )  
0.63661977 (2) -0.131 041 ( 5 )  0.03400(2) -0.0097 (3) * 

On the other hand, from finite-size scaling theory [43] one would expect that the 
leading coefficient of the singular free energy should be universal. To check this, we 
generalize the quantum Hamiltonian (1.6) by including an irrelevant parameter '7 

1 
-- ( K - 1) 1' { (1 + ~ ) u . " (  k ) & (  k + 1) + ( I  - q ) d (  k)u'(  k + l)} (2.18) 

47 k 

and the prime in the second sum indicates that the defects are placed according to 
(l.2), as described in section 2.1. For the K = 1 case, this model was first solved by 
Katsura 1441 and it was shown that for q # 0, the transition at I = I, = 1 stays in the 
2u king  universality class [45]. The introduction of 1) allows a very transparent test 
of the universality predictions 1431 of finite-size scaling. For K = 1, universality is indeed 
satisfied for the entire correlation length spectrum 1461. Universality was also confirmed 
for the case of two defect lines [17]. 

In order to test universality, some care is necessary with the normalization of the 
Hamiltonian (2.18)if#< 1 .  This reflectsacertainarbitrarinessin takingtheHamiltonian 
limit leading to (1.6) or (2.18), see [34]. In (2.18), we normalized H according to the 
case of finitely many defect lines 1171. In fact, we find that a different normalization 
must be used here. In table 5, we give numerical estimates of the B , ( q ,  K ) .  While the 
bulk term Bo can be taken from the homogeneous system [46], the next correction 

Table 5. Finite-size scaling coeficients for the ground-state energy for the generalized 
Hamiltonian (2.19). far 8 =  112, at the critical point. 

1.0 1.0" $ 0 0 0 0.261 799 
1.0 0,636619 7724 0.0 0.0 0.0 0.261 80 (2) 
0.8 0.636619(1) -0.059 705 ( 5 )  0.00787 (2) -0.014(1) 
0.5 0.63661977(2) -0.131 041 ( 5 )  0.03400(2) -0.0097(3) 
0.2 0.636618 7724 ( I )  -0.173 2686 ( I )  0.05933 ( I )  -0.027 37 ( 1 )  0.015 ( 1 )  
0.0 0,6366187724 -0.181 690 114(1) 0.065449(1) -0.032724(2) 
0.04 ; -0,181 690 I13 0.065449846 -0.032724923 

0.0 0.745044812(2) -0.174 13596 0.06544(1) -0.009872(1) 
0.5 0.5 I .O88l lO245(1)  -0.11645557(3) 0.0469(11 0.025 37 (I) 

0.0 1.088 110245(5) -O.l539I539(1) 0.06544l l )  0.049 21 (I) 
0.2 0.5 2.542782(1) -0.086054(5) 0.0619(1) 0.035 (I) 

0.0 2.54278(1) -0.1062(1) 0.065(1) 0.23(11 

0.8 0.5 0.74504481(5) -0.127357(1) 0.03809(1) 0.0038 I1 

'8 Exac1 results. 
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might at first sight appear to be  q-dependent. In fact, we fail to find any universal 
coefficient B, in the finite-size scaling of the free energy. However, if we compare this 
(see table 6 )  with the lowest one-particle amplitude A:'' (which is @independent), 
we find a q-independent ratio 

B,/A,-0.168(4)- 1/6 

(for K = 1/2, 0 = 1/2), which identifies 5, as the leading singular contribution to the 
ground-state energy, in agreement with the scaling expectation. 

Table 6. Finite-size scaling amplitudes for the lowest gap ( A , )  and the ground-state energy 
(B , )  as a function of the irrelevant parameter 7. for ~j = 112, 8 =  112. 

7 B, A ,  &/AL 

1 .o 0.034 00 (2) 0.204 88 (1) 0.1660(1) 
0.8 0.038 09 (4) 0.227 030 ( 5 )  0.165 (2) 
0.5 0.0469(1) 0.277 97 ( 5 )  0.169 (4) 
0.2 0.061 9 (1) 0.3745(10) 0.167 (3) 

Since the line defects represent an irrelevant perturbation close to K = 0, we can 
use the scaling behaviour of the free energy for decoupled strips to get the free energy 
scaling. On a strip of width N" one has for the (singular) free energy density, at K = 0 

(2.19) 

(with B = b"'). We have confirmed this scaling form for 0 s K < 1 as shown in the 
tables. In  particular, we read off 1/ wL = y @  with y = 1 for the 2~ king  model and find 
for the specific heat exponent a = Z(1- OYJ = 0. We note that this result is different 
from what would be  obtained if the anisotropichyperscaling relation 2 - a  = w l I +  w L  
could be used (as it can in &-expansion and with averaging over the defect couplings 
[32]) and would give a = 1 - 1 / 0  (for a probably similar situation in the context of 
directed percolation, see [47,48]). 

2.4. Summary 

Numerical studies of the transfer matrix allowed us to find some critical exponents 
and to guess the finite-size scaling form of the critical spectrum. The tables show the 
extent by which one can reproduce the expected results, although the lattices needed 
are quite large. Although our results were obtained in the Hamiltonian limit, by 
universality (which was explicitly confirmed in a few examples) our results are also 
correct for the isotropic transfer matrix. 

Reconsidering figures 2 and 3, we see that finite-size corrections to the bands are 
quite small and, furthermore, the bands are @-independent. This suggests that it might 
be  possible to study at least some types of random systems by investigating a related 
model with a 8 close to 1, which might be easier to deal with. 

f ( f ,  N ) =  b-2f (bYf ,  b N - ' ) =  B-2Rf(B'"f ,  E N - ' )  

3. Exact solution of the spectrum 

In this section, we calculate exactly the one-particle spectrum A k  of the quantum 
Hamiltonian H (1.6). I n  particular, we want to prove the results stated in (2.12) and 
(2.13) for the amplitudes A'". 
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Our starting point is (2.5). In principle, the matrix M can be diagonalized by 
exploiting translation invariance. Then the finite-size dispersion relation is found by 
the vanishing of a 2A x 2 A  determinant [20]. While this technique works well if A, 
the number of defects, is finite (and small), in our case A - NI-' becomes very large 
and we need a more efficient approach. 

We shall use a technique applied by Flores [49] to the study of a I D  electron gas 
which is particularly convenient for our purposes. Similar techniques were used for 
the layered king models studied in  [ l ,  3,4]. We write 

M=21-R (3.1) 
where I is the unit matrix and consider the eigenvalue problem of the matrix R. Writing 
out the components, it reads, where for the moment we neglect the boundary terms 
in (2.1) and (2.5), 

(3.2) D m k - i +  V d m  + D m + i @ m + i  = E$m 

where 

0 if m # sn 
v,=rv if m = sn 

if m # sn 
if m = sn .%+I = 

(3.3) 

(3.4) 

where s is an integer and V = 1 - x2, D = K. In the equivalent electron theory [49], V, 
is the potential energy of an electron while Dm describes the hopping on a lattice with 
impurities, as illustrated in figure 4. 

The discrete Schrodinger equation (3.2) is written in recursive form 

Denote 4, := @,,s+, . Then, using (3.5), the wavefunctions at the positions n ( s  - l ) ,  ns 
and n ( s + l )  can be related 

(3.6) 

(3.7) 

where the matrix W(E;  n )  is given by 

(3.8) 
( E - V ) / D  

0 
W ( E ;  n)= 

and we have det W =  1. Inverting (3.61, one obtains by combining with (3.7) a 
Schrodinger equation for the 47 alone 

4,+.l+4s-l = t r W 4 , .  (3.9) 

c 
c 4 

N 

Figure 4. The two different Iypes of sites on the quantum chain. 



ZD layered k i n g  models 5133 

From the ansatz 

CA = A exp(i Ks) + B exp(-iKs) (3.10) 

where K is real, we have directly 

t r W ( E ;  n ) = 2  cos K .  (3.11) 

To calculate tr W, we note that [49], using the definition E = 2 cos k, 

(3.12) 

as can be shown by induction over n. It  is now straightforward algebra to obtain the 
dispersion relation (n even) 

1 
2 cos K =. [(k2- 1 ) ( 1  -cos k) sin k n + ( l  + K 2 )  sin k cos kn] (3.13) 

K sin k 

while, recalling (3.11, the one-fermion energies of the quantum Hamiltonian (1.6) are 
given by 

(3.14) 

We now discuss the consequences for the spectrum. The Brillouin zone for k is 

1 f.':=(l E -1  o) "-2 =-( 1 sink(n-1) -s ink(n-2)  
sink sin k ( n  -2) -sin k ( n - 3 )  

A: = 2-2  cos k. 

the interval 0s k < 2 n ,  which is decomposed in 2n hands of size r / n  

In+& 
k=-- O S E < n  r=O, 1, .  . . , 2 n  - 1  (3.15) 

n 

where r characterizes the different bands while E describes the intra-hand states. Then 
the dispersion relation (3.13) becomes 

] (3.16) 2 cos K =- (1 - K2)  tan-  cos r r  sin E + ( 1  + K 2 )  cos(rn+E) 

and since for n large and r finite and small, tan k / 2 -  l /n ,  this simplifies in the n +a 
limit to 

k 
K ' [  2 

1 + K 2  

K 
2 cos K =- cos( r r +  E ) .  (3.17) 

The levels for which r is small are in any case the only ones with which we can compare 
our numerical data. 

The intra-band states are described by E 

2K COSK 
(3.18) 

The boundaries of the bands are obtained from the extreme values of E 

where (2.15) was used. We stress that the hand boundaries are independent of r. The 
lower bound of the hand is 

r?i+ r ( 1 / 2 -  A(K)) 
n 

r ( r +  1/2 -A(K)) 
A $ i n ( r ) = 2 - 2 ~ ~ ~  =( n (3.20) 
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Similarly, the upper bound is found and  we have, to leading order in 1111, 

L Frachebourg and M Henkel 

Finally, we give the energies of the  states inside the hands. Up to now, we have 
not taken into account the boundary conditions, which means that the results derived 
so far are independent of them. This was already confirmed numerically in section 2. 
We now recall that periodic boundary conditions in (1.6) imply 4% = y4.+.,, with y = -1 
for Q = 0 and  y = + I  for Q = 1. The quasimomenta for the intra-band states are now 
discretized 

K ,  =2?rmlN'-'. (3 .22)  

For y =  1 ,  m is an  integer. Thus the intra-band energies are, independently of r, 

(3.23) 
2K 

E, = c0s-I (x 
It is thus sufficient to treat the case r = 0 and we then find, for m finite and N + a?, 

A2(0, m)-A2(0 ,  0) = 2  cos z , / n - 2  cos E O / n  

For y = -1 ,  replace m by m + 112. Collecting all results, we have the one-particle 
amplitudes A'Q' as given in (2.12) a n d  (2.13), including the stated degeneracies. 

4. Conclusions 

We have obtained exactly the (low-lying) spectrum of a class of layered lsing models 
which interpolate between the homogeneous system and  the McCoy-Wu model. The 
critical point is not isotropic; rather, the critical exponents are seen to be direction 
dependent. 

The transfer matrix spectrum can be  decomposed into two parts: the bands for the 
one-particle energies and the intra-hand levels. As we have shown by using an  analogy 
with an electron gas, one can effectively treat these two subsystems separately. The 
first one corresponds to an  effective subsystem of size n - N", thereby treating a whole 
band as a single entity. Its energy levels are equidistant and one could cast the bands 
as a whole into the framework known from conformal invariance. 

The long-range behaviour is, however, dominated by the second subsystem, of 
effective size A - N'-". This describes the intra-band excitations, which are given by 
an effective quadratic dispersion relation. It is exclusively this subsystem whose spec- 
trum should be compared with the transfer matrix spectra of other directed models. 
The spectrum of this second subsystem is equivalent to that of the tight-binding model 
[35]. This is probably not very surprising, since both models can be expressed by 
fermionic harmonic oscillators. 
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It remains to he seen if the equidistant level spacing of the first subsystem is more 
than a mathematical curiosity. 
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